
54 The Delphi Magazine Issue 24

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

or write/fax us at The Delphi Magazine

Making A 256 Colour Bitmap

QI am writing a part of my ap-
plication where I need to

capture a (known) area of the
screen and save it to a .BMP file.
This would be fine, I can write the
API code to do this, but the screen
is in 256 colour. When I check the
bitmap file it only has 16 colours
stored in it. What do I need to do in
addition to just saving the bitmap
to get all the right colours saved
into the file?

AWhat you are missing is a
colour palette. Just creating

a TBitmap object, writing onto its
canvas and calling the SaveToFile
method will make you a 16 colour
bitmap. To get a 256 colour bitmap
you need to manufacture a palette
and assign it to the bitmap’s Pal-
ette property. Fortunately, Win-
dows already has a palette set up
internally that the other applica-
tions are making use of. Since you
are capturing the screen then this
will be the palette you want.

On the other hand, if you were
programmatically manufacturing
an arbitrary bitmap, then you
might need to manufacture a cus-
tom palette with custom colour
values in it.

In Delphi, a palette is repre-
sented by a TLogPalette (see List-
ing 1). This is a data structure that
can hold a variable number of
TPaletteEntry records. Since the
actual number to be used may
vary, the array has been declared
with just one element.

To use a TLogPalette structure,
you typically declare a variable
that points to it (ie a PLogPalette).
You can then allocate sufficient
heap space for the fixed fields and
also for as many palette entries as
are required.

Delphi 3 has rather more palette
support built into the VCL and so
to avoid doing repetitive heap
management calls, it defines a new
type that specifies 256 palette en-
tries (see Listing 2).

Your code that fails to save the
palette probably looks a bit like
Listing 3. It should be extended to
look more like Listing 4 which is

one of the button OnClick handlers
from the Capture.Dpr project on
the disk. This has an image control
called Img and three buttons on it.
The first button captures the top
left portion of the screen (as big an
area as the image started its life
with). The other two buttons save
the image to a BMP file and load a
BMP file into the image (to verify

➤ Figure 1

PPaletteEntry = ^TPaletteEntry;
TPaletteEntry = packed record
peRed: Byte;
peGreen: Byte;
peBlue: Byte;
peFlags: Byte;

end;
PLogPalette = ^TLogPalette;
TLogPalette = packed record
palVersion: Word;
palNumEntries: Word;
palPalEntry: array[0..0] of TPaletteEntry;

end;

➤ Listing 1

PMaxLogPalette = ^TMaxLogPalette;
TMaxLogPalette = packed record
palVersion: Word;
palNumEntries: Word;
palPalEntry: array [Byte] of TPaletteEntry;

end;

➤ Listing 2

56 The Delphi Magazine Issue 24

that the palette was saved cor-
rectly). Figure 1 shows the pro-
gram after having captured a
corner of my 256 colour desktop,
saved it and reloaded it from a BMP
file.

To accompany the Capture.Dpr
project, a Capture3.Dpr project is
also supplied. This uses Delphi 3’s
new picture save and picture load
dialogs and also uses TMaxLogPal-
ette instead of PLogPalette to
avoid memory management
operations.

Background
Palette Information
When you are running Windows in
16 colour mode, there are 4 bits re-
quired to represent the total
number of colours and so 16 colour
mode is also referred to as 4-bit
mode. Each pixel in the bitmap
takes 4 bits to indicate which of the
16 colours it is. These 16 colours
are used by the video system to in-
dex into the full range of colours
available. 256 colour mode uses 8
bits to represent each of the 256
colours and again indexes into a
colour table in the video system.
Therefore 256 colour mode is often
referred to as 8-bit mode. A palette
can be used to specify alternative
target colours for the index values
to refer to in both 4-bit and 8-bit
mode.

If you are working in high colour
modes such as 16-bit or 24-bit, then
the issue of palettes becomes
somewhat redundant. In 16-bit col-
our mode (not to be confused with
16 colour mode, which is 4-bit),
each pixel uses 16 bits to represent
the colour. Rather than an index,
this value is made up of three sets
of five bits (and a spare) that define
the colour in terms of how much
red, green and blue go to make it
up. In 24-bit, there are three sets of
eight bits to define colours even
more accurately. So palettes to de-
fine the target colours are mostly
irrelevant: the pixel values them-
selves define the colours.

MessageDlg Surprises

QI regularly use MessageDlg
with OK and Cancel buttons.

Recently I used one with a Yes and a

No button and got a nasty shock. If
the user presses neither button
but closes the dialog with the dia-
log’s system menu, then neither
mrYes nor mrNo is returned by Mes-
sageDlg. What should I do to trap
for this possibility?

AI guess that you are using
code like that in Listing 5. It

is standard Windows practice to

take a user-action of closing the
form with Alt-F4 or whatever (ie
no button pressing) to be a cancel-
lation, so the MessageDlg routine re-
turns mrCancel under those
circumstances. Therefore you
could modify your code as shown
in Listing 6. Alternatively you
could embrace that third option
and differentiate between No and
Cancel. No answers “No” to the

procedure TForm1.Button1Click(Sender: TObject);
var
R: TRect;
C: TCanvas;

begin
R := Img.BoundsRect;
C := TCanvas.Create;
C.Handle := GetDC(HWnd_Desktop);
try
Img.Canvas.CopyRect(R, C, R);

finally
ReleaseDC(HWnd_Desktop, C.Handle);
C.Free;

end;
end;

➤ Listing 3

procedure TForm1.Button1Click(Sender: TObject);
const
NumColors = 256;

var
R: TRect;
C: TCanvas;
LP: PLogPalette;
Size: Integer;

begin
R := Img.BoundsRect;
C := TCanvas.Create;
C.Handle := GetDC(HWnd_Desktop);
try
Img.Canvas.CopyRect(R, C, R);
Size := SizeOf(TLogPalette) +
(Pred(NumColors) * SizeOf(TPaletteEntry));
LP := AllocMem(Size);
try
LP^.palVersion := $300;
LP^.palNumEntries := NumColors;
GetSystemPaletteEntries(C.Handle, 0, NumColors, LP^.palPalEntry);
Img.Picture.Bitmap.Palette := CreatePalette(LP^);

finally
FreeMem(LP, Size);

end
finally
ReleaseDC(HWnd_Desktop, C.Handle);
C.Free;

end;
end;

➤ Listing 4

procedure TForm1.FormCloseQuery(Sender: TObject; var CanClose: Boolean);
begin
if MessageDlg(‘Save changes before leaving?’,

mtInformation, [mbYes, mbNo], 0) = mrNo then
Exit;

{ Do saving ... }
end;

➤ Listing 5

August 1997 The Delphi Magazine 57

question being asked but allows
the execution flow to continue un-
molested, whereas Cancel stops
the current execution flow. See
Listing 7 for an example of this.

Localised
Database Headaches

QI have a problem concerning
Personal Oracle 7.3 on Win-

dows 95 and using BDE 3.5. If I try to
write data into an integer field in
my database and have a German
version of Personal Oracle in-
stalled I get an exception saying
that the number format is not valid.
Dates and strings work without
problem. Also the English version
of Personal Oracle does not exhibit
this problem. I tried all kinds of dif-
ferent BDE settings to no avail.
What must I do to fix the problem?

AThis is quite a well known
problem for anybody who

uses a comma as a decimal separa-
tor as opposed to a period (or full
stop). The BDE Configuration
app’s Number page has a likely look-
ing setting called DECIMALSEPARATOR,
but unfortunately it is ignored by
Delphi. In fact all the settings on
the last three pages are ignored by
Delphi: they are principally meant
to be used for QBE execution and
since Delphi does not inherently
support QBE files, the settings are
not used.

The problem occurs primarily
when you set the ENABLE BCD

property to True when working
with Oracle and Informix. This is a
32-bit BDE setting which defaults
to False.

Luckily there are two relatively
painless workarounds. One would
be to set ENABLE BCD back to False.
The other involves issuing this
query:

ALTER SESSION

SET NLS_NUMERIC_CHARACTERS = ’.,’

after the database has been
opened but before you open any of
the datasets. You need to ensure
the alias’s SQLPASSTHRU MODE is set to
either SHARED AUTOCOMMIT or SHARED
NOAUTOCOMMIT so that the datasets
will actually benefit from this
query statement.

Iconic Applications

QI am trying to start up an ap-
plication with it always mini-

mised on the task bar (Win95 or NT
4) or minimised on the desktop
(WinNT 3.51 or Win 3.1x). I am un-
able to come up with a satisfactory
solution.

AIn theory this is easy. When
someone tries to restore

your iconised form, Windows
sends it a message. If the form re-
turns zero, the form doesn’t re-
store. That should be it. However,
things are often not that clear cut
when talking to Delphi forms at the
API level.

To make the application start off
minimised, you set the main form’s
WindowState property to wsMini-
mized. This causes a Delphi 1 app to
start life with the main form
iconised on the task bar or desk-
top. In the case of a Delphi 3 app, it
is the Application window that
starts off minimised on the desk-
top. That is more like what would
be anticipated by someone who
knows about the innards of the
VCL since when any Delphi appli-
cation is running, minimising the
main form causes the Application
window to be iconised on the task
bar, not the main form’s window.
When a Delphi 2 app starts with its
main form set to minimise it gets
things confused and leaves the
main form looking like a minimised
MDI child above the task bar. The
fix for this was discussed in The
Delphi Clinic in Issue 9. When the
fix is applied, Delphi 2 and 3 act
alike.

So, a Delphi 1 app needs to pre-
vent the main form being restored
and Delphi 2 and 3 apps need to
prevent the Application window
being restored. Of course what
normally happens when the Appli-
cation window is restored is that it
restores all the other windows (in-
cluding the minimised main form)
so 32-bit apps still really need to
prevent the main form being re-
stored. This business with the
main form is easily dealt with using
a message handling method to re-
spond to wm_QueryOpen messages.

To make the application’s sys-
tem menu look sensible, during ap-
plication startup we can delete the
inappropriate menu items such as
Move, Size, Restore, Minimize and
Maximize, leaving the only relevant
one: Close. Of course in Delphi 1
this is the main form’s system
menu.

In Delphi 2 and 3 it will be the Ap-
plication’s. This can also be done
in a message handler. Windows
sends a wm_NCCreatemessage when
it is manufacturing the non-client
area of the form (including borders
and system menu). We can trap
this message and follow this de-
fault functionality with the appro-
priate API calls to tidy up the
system menu.

procedure TForm1.FormCloseQuery(Sender: TObject; var CanClose: Boolean);
begin
if MessageDlg(‘Save changes before leaving?’,

mtInformation, [mbYes, mbNo], 0) <> mrYes then
Exit;

{ Do saving ... }
end;

➤ Listing 6

procedure TForm1.FormCloseQuery(Sender: TObject; var CanClose: Boolean);
begin
case MessageDlg(‘Save changes before leaving?’,

mtInformation, mbYesNoCancel, 0) of
{ Save data if user wishes }
mrYes: { Do saving ... };
{ Abandon form closure }
mrCancel: CanClose := False;

end;
end;

➤ Listing 7

58 The Delphi Magazine Issue 24

The IconStay.Dpr project on the disk implements all
these requirements using conditional compilation to
work in all three versions of the product.

Listing 8 shows the main form unit, although it omits
the code required to fix the Delphi 3 bug.

Acknowledgements
Thanks to Steve Axtell and Mike Scott for help with
parts of this month’s column.

type
TForm1 = class(TForm)
private
procedure WMQueryOpen(var Msg: TWMQueryOpen);
message wm_QueryOpen;

procedure WMNCCreate(var Msg: TWMNCCreate);
message wm_NCCreate;

end;
...

procedure TForm1.WMQueryOpen(var Msg: TWMQueryOpen);
begin
Msg.Result := 0;

end;

procedure TForm1.WMNCCreate(var Msg: TWMNCCreate);
var SysMenu: HMenu;
begin
inherited;
{ Delphi 1 generally shows the Application window
when iconised. However if the app starts with the
main form minimised then the icon is that of the
main form. It seems that Delphi 2 and 3+ make
things more consistent by using the Application
window regardless. Therefore, some conditional
compilation is required }

SysMenu := GetSystemMenu(
{$ifndef Windows}
Application.{$endif}Handle, False);

{ Get rid of irrelevant system menu entries }
DeleteMenu(SysMenu, sc_Size, mf_ByCommand);
DeleteMenu(SysMenu, sc_Move, mf_ByCommand);
DeleteMenu(SysMenu, sc_Minimize, mf_ByCommand);
DeleteMenu(SysMenu, sc_Maximize, mf_ByCommand);
DeleteMenu(SysMenu, sc_Restore, mf_ByCommand);
{ Get rid of the separator item that remains }
DeleteMenu(SysMenu, 0, mf_ByPosition);
{ Refresh the system menu }
DrawMenuBar(Handle);

end;

➤ Listing 8

On our Web site:
http://www.itecuk.com
Don’t forget to visit our Web site regularly to keep
up to date. Here’s some of what you can find:

➤ Updated program and data files for TDMAid,
the Article Index Database.

➤ TDMaid Online for immediate access!

➤ The Delphi Magazine Book Review Database.

➤ Is your companion disk dead? The source and
example files from the articles for the last few
issues are here for download.*

➤ Details of what’s in the next issue.

➤ Back issues: contents and availability.

➤ Sample articles from back issues.

➤ Links to other great Delphi sites.

* Do also contact us so we can send you a new disk.

	Making A 256 Colour Bitmap
	Background Palette Information
	MessageDlg Surprises
	Localised Database Headaches
	Iconic Applications
	Acknowledgements
	On our Web site:

